What Everyone Should Know About Math Contests

Math contests encourage a growth mindset.

Students who are accustomed to earning 95% or 100% on their worksheets and test papers understandably view that as a badge of honor, but the desire to maintain high grades can lead to wanting to “look smart” rather than “be smart.” This “tyranny of 100%” can encourage students to avoid challenge for fear of a lower grade. Because math contests are designed to identify only one winning student, even accomplished math students may earn far less than 90%. Regular participation in math contests that don’t impact GPA and where lower grades are common enables students to relax and learn for the sake of learning and not in order to “look smart.”

With academic support, math contests can replace a math curriculum.

I’ve had students who refuse to follow a traditional math curriculum, but were happy to learn their algebra, geometry, and discrete math in 3 years of preparing for MathCounts. With a strong coach who can explain and derive the concepts behind each problem, students can learn with greater retention. They don’t learn the Pythagorean Theorem once and then forget it. They are forced to deploy it in novel situations week after week at each MathCounts practice.

Math contests don’t always reward speed or math tricks.

Most modern math contests do not ask students to solve the identical multiplication problems in 10 minutes. Instead they reward thoughtful persistence and grit toward arriving at a solution. Each problem is different from the one previous and the one following. A geometry problem using similar triangles will be followed by a probability problem involving dice will be followed by a problem solved by modular arithmetic.

Math contests encourage academic bravery and risk-taking.

Often it isn’t obvious whether a particular strategy will result in a solved problem. It’s like navigating your way to the drugstore without a map by peering down a street and considering whether it might be there. A particular street may or may not have the drugstore, but you won’t know unless you take a risk and travel down the street. Likewise, in math, the most interesting problems don’t have a map showing you the way and often the student needs to take a risk and try something to know if it works.

Make math contests work for you

Many parents and students believe math contests aren’t for them because of the above reasons, but don’t let these misconceptions steer you away from this useful tool.

I’m your expert in all things related to Art of Problem Solving math curriculum and math contests generally.   I guide students who are taking the online AoPS courses and studying from the textbooks independently.  I help students prepare for AMCs and I coach a homeschooled MathCounts team every year.

You can also call me a Richard Rusczyk fan girl.  One of my favorite talks is one he delivered at Math Prize for Girls in 2009, when he showed this slide:

“I certainly wish your website and materials existed when I was in high school. I went through junior high and high school without ever missing a question on a math test, and then took [Math] 103 and 104 at Princeton, which was one of the most unpleasant and bewildering experiences of my life and poisoned me on math for years.”
–Princeton University alum
He continues:

“I want you to think for a minute what this student’s middle school and high school teachers thought when he went off to Princeton.  They thought, “We succeeded.  He went off to Princeton; we’re awesome.”  They never saw this.  I’m sure he didn’t go back to his middle school teachers and say, “Yeah what’s up?!?  You didn’t prepare me for this.”

“So they didn’t get this feedback, and this happens a lot.  Kids go through school, some very good schools, they get perfect scores on everything, and then they come to a place like MIT, a place like Princeton, they walk into that first year math class, and they see something they’ve never seen before: problems they don’t know how to solve.  And they completely freak out.  And that’s a bad time to have these first experiences.  Having to overcome initial failure.”

Don’t let this happen to your student.  Front load their math education by challenging them early in their academic career.  I’m talking elementary and middle school.

I like math contests for many reasons.  Here’s one more reason:

Even the earliest math contests train young students to answer the question that was asked, not the “answer” they came up with.  Here are some examples from Math Olympiad, designed for students in grades 4 – 6.

This question asks for the sum of the 5 prime numbers:

This question asks for the least of these numbers:

This question asks for the sum of two numbers:

When students learn this discipline early, they won’t miss key instructions like this one from a practice SAT:A student may get the correct estimate for height at 2 years old or 5 years old, but fail to answer the question that was asked.

Careful reading requires practice, and is not something a student sees when all they use are worksheets like this:

5 Ways to Show Your Work

I tutor students who are using the AoPS math curriculum and/or are preparing for math contests like MathCounts and AMC.

Today I’m sharing 5 Ways to Show Your Work in math that you can start doing today.

1. Line Up Equal Signs.  Nothing helps organize your thoughts like equal signs in a straight line.
2. Reorient Similar Triangles.  You found similar triangles.  Yay!  The last thing you want now is wrong ratios from wrong corresponding sides.  To avoid errors, redraw the triangles so that corresponding sides are oriented the same way.
4. Line Up Substitutions.  Everything that’s equal is in the same column.
5. Practice your 3D Drawings and Cross Sections.  Get used to slicing up solids and drawing parallel lines to vanishing points.  It’s art!  It’s math!

I teach math to homeschooled students, and I limit my practice to Art of Problem Solving curricula and preparing for math contests like MOEMS, MathCounts, and AMC.

Today I want to talk about a certain type of student that I help more than any other:  The Online AoPS Student.

AoPS offers terrific online classes for students who love math.  They are text-based, with no video or audio, just a live moderated discussion board where teachers ask questions and ideal student responses are posted.  They offer weekly homework, reading assignments from their textbooks, and more online practice with their Alcumus problems. My own kids and I have taken these classes and enjoyed them.

So why are parents coming to me to help their online AoPS students?  I’ll answer this question with my list of 5 Ways to Help your AoPS Student

(1)  Read the textbook before class.

This is a tall order for any student, especially those in elementary and middle school.  Many don’t learn this style of independent study until college. Now is a good time to learn this education hack with a built in incentive:  if you arrive at your AoPS class more prepared, then your answers are more likely to be models and selected to posted for the class to see. As any AoPS student will tell you, they live for the fame and glory of being posted!

(2) ACTIVELY read the AoPS textbook.

Reading a challenging textbook in any field does not look like curling up with a cup of tea under a warm blanket.  Reading a challenging textbook means sitting up in an uncomfortable chair at a desk or large table, with a pen and notebook ready to go.  Write out the problems and the solutions, copying them line by line as if you were solving them yourself.  Understand each step before you continue. Work through all the practice exercises.  Get your money’s worth!

(3)  Learn in small chunks every day

It’s better to learn in smaller chunks every day than to cram a whole chapter’s worth of material the day the homework is due.  Sleeping helps with educational digestion.

(4)  Start homework problems early

Read and attempt a few problems.  When you reach a wall, don’t bang your head against it.  Walk away from your homework, sleep on it and try again the next day.  Maybe take some time to solve a few alcumus problems. Schedule time every day to just take another look at your homework.  The truly difficult problems in life are not solved in an hour but often require months or years of study. Get used to it.

(5)  Consider ditching the online class and going old school

The AoPS textbooks have plenty of practice problems and plenty of challenge problems.  Work through the textbooks at home, every day, for a less than an hour per day. Model clear mathematical technique by writing out the problems and solutions as you read.  Make slow but steady progress on your own schedule. We took over 1 calendar year (including summers!) each on prealgebra and algebra, but it was worth the extra time to ensure complete mastery.  In contrast the AoPS classes proceed at a blistering pace.

Online learning is tough which is why I’m called to help.  I spend much of my time reteaching students the principles already described in the text.  I also assign practice problems from the textbook that align with the online homework problems.   I model clear problem solving documentation (AKA showing your work) so they can see for themselves how helpful it is.

Old algorithms and new

I’m taking a number theory class this summer, so my mind is full of residuals and mods.  In that mindset it’s easy to forget all the other math I’ve learned in my life.  Here’s an example.  I was asked to find a divisor between $2000$ and $3000$ of this expression:

$85^9 -21^9 + 6^9$

Because $85$, $21$, and $6$ all have prime factors in common, it’s easy to find some primes that evenly divide this expression.  But that alone isn’t enough to find a single number between $2000$ and $3000$.

I considered all the divisibility formulas I had learned in the previous lecture:  Fermat’s Little Theorem, Euler’s Theorem, and Wilson’s Theorem, but nothing seemed to work.

It turns out, solving the problem is made easier by seeing that the first $2$ terms in the expression:  $85^9 - 21^9$ can be expressed as a difference of cubes.  Twice actually!

$85^9 - 21^9 = (85^3)^3-(21^3)^3$

A difference of cubes can be factored as:

$a^3-b^3 = (a-b)(a^2 +ab + b^2)$

Substituting, we find:

$85^9 - 21^9 = (85^3)^3-(21^3)^3 = (85^3-21^3)((85^3)^2+85^321^3+(21^3)^2)$

But now we can do it again with the first factor:

$85^3-21^3=(85-21)(85^2+85 \cdot 21+21^2)$

Setting $N$ equal to all those yucky square and cubes to the right, we now we have

$85^9 - 21^9 = (85-21)N=64N=2^6N$.

And so we have:

$85^9-21^9+6^9 = 2^6N + 2^62^33^9 = 2^6(N+2^33^9)$

And voila, we have found another factor, $2^6$, that divides this expression.

Good math problems force the student to use not only skills they have just learned, but also draw on older skills and older theorems that have been sitting around unused in your brain.

This is another reason I think math contests are so valuable to our students.  Students continue to use all the algorithms they learned earlier, keeping it fresh in their minds.   Is it unfair to test students on factoring polynomials in a number theory class?  Strong students welcome the opportunity to be reminded of old almost-forgotten formulas because hopefully they’ll recognize those differences of cubes again in the future.

Rates

Students who are solid on rate problems will earn easy points on MathCounts!

The only formula to memorize is the definition of rate, $r=\frac{d}{t}$ where $d=$ distance and $t=$ time.  I find it helpful to draw a quick diagram so I can visualize what is happening to our MathCounts team on their way to and from the contest.  (H=home, MC = MathCounts contest.)

On the return trip we multiply the time by $2$, multiply the distance by $\frac{3}{2}$, and subtract $10$ mi/h from the rate.

The first equation I have written derives from the fact that the new rate is equal to the old rate minus 10 mi/h.  Then it is a matter of solving for $r=\frac{d}{t}$ which is the rate to the contest.

Source: MathCounts

Number of factors

There’s a neat trick for finding the number of factors of a number.  First find the prime factorization of the number, for example:

$756 = 2^2 \cdot 3^3 \cdot 7^1$

Add $+1$ to the power of each prime factor and then multiply those numbers together.  In this example,

$(2+1)\cdot(3+1)\cdot(1+1)= 3\cdot 4 \cdot 2 = 24$ factors.

This reflects the fact that each factor of $756$ contains $2^n$ where $n= 0, 1$, or $2$ and $3^m$, where $m = 0, 1, 2$, or $3$ and $7^p$ where $p = 0$ or $1$.

I used this property to solve a problem in a number theory class I’m taking.  The problem asks to compute the sum of all positive integers $k$ such that $1984k$ has  $21$ positive factors.

Since $21 = 3\cdot7$, working backward we are looking for a prime factorization with 2 primes raised to the powers of 2 and 6.  The prime factorization of $1984 = 2^6\cdot 31$ so we have one prime raised to the sixth power.  All we need is the other prime to be squared.  Setting $k=31$ gives us

$1984k = 2^6\cdot 31^2$ with $(6+1)(2+1)= 21$ divisors.

Python for fun

With the school year over, I’ve had time to pursue other math related activities.  I’ve been reading through the book Joy of SET by Liz McMahon and others.  It describes the “many mathematical dimensions of a seemingly simple card game” and was recommended to me a few months ago.

There were a few chapters on various probabilities, like the probability of finding 1 set out of 4 randomly chosen cards.  I enjoy writing  python programs that can confirm calculated probabilities by running a simulation several thousands of times.

My program will step through a game of SET, dealing 12 cards, finding SETs and removing them from the table, and dealing more cards so that there are 12 cards on the table again.  If there are no SETs in the dozen cards, then it deals 3 more.

I also wrote a function that will find the probability of finding n SETs when one randomly deals x cards, allowing the user to choose how many times to run the simulation.  I find that 10,000 repetitions is about adequate.

Check out my SET program here.  It’s still a work in progress.  I’m now deciding whether to calculate the expected value of the number of SETs in a dozen cards, which will mean rewriting some of my methods.

Here’s a hack:  if you forget anything in python you can just google it for a refresher.   For example, I couldn’t remember how to set argument defaults for my functions, so I googled:  “python function set default arguments.”

Summertime is a great time for students to follow rabbit holes and exercise python skills.

Student feedback

Indeed the alternating sum of digits proof for multiples of eleven is fun.